24 research outputs found

    A Chloride Channel at the Basolateral Membrane of the Distal-convoluted Tubule: a Candidate ClC-K Channel

    Get PDF
    The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl− cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl− transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl− channels on microdissected mouse DCTs using the patch-clamp technique. A channel of ∌9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NPo in cell-attached patches was not modified when tubules were preincubated in the presence of 10−5 M forskolin, but the channel was inhibited by phorbol ester (10−6 M). In addition, NPo was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NPo increased threefold), or pH increased from 6.4 to 8.0 (NPo increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl− relative permeability was 0.09, and the anion selectivity sequence Cl− ∌ I−> Br− ∌ NO3− > F−. Intracellular NPPB (10−4 M) and DPC (10−3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl− channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family

    The endocannabinoid system controls food intake via olfactory processes

    Get PDF
    Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior

    Caractérisation des canaux chlorures de la membrane basolatérale du néphron distal de souris

    No full text
    PARIS-BIUSJ-ThĂšses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Adult neurogenesis and the future of the rejuvenating brain circuits.

    Get PDF
    International audienceFor a long time, the mammalian brain has been perceived to be a static organ. However, the discovery of adult neurogenesis in most mammalian species, including humans, monkeys, and rodents, has disrupted this view. As this continuous regeneration has an effect on established behavioral patterns, it holds promising therapeutic potential. However, before harnessing this potential regenerative power, we must understand what effects new neurons have on existing brain circuits. Ongoing research contributes to several important steps toward bridging the gap between adult-born neurons, circuits, and behavior. The study of adult neurogenesis in different neurogenic regions from a systems neuroscience perspective will pave the way to understanding how it supports adaptive behavior and why its dysfunction correlates with some human brain disorders

    Similar chloride channels in the connecting tubule and cortical collecting duct of the mouse kidney

    No full text
    International audienceUsing the patch-clamp technique, we investigated Cl- channels on the basolateral membrane of the connecting tubule (CNT) and cortical collecting duct (CCD). We found a approximately 10-pS channel in CNT cell-attached patches. Substitution of sodium gluconate for NaCl in the pipette shifted the reversal potential by +25 mV, whereas N-methyl-D-gluconate chloride had no effect, indicating anion selectivity. On inside-out patches, we determined a selectivity sequence of Cl- > Br- approximately NO3(-) > F-, which is compatible with that of ClC-K2, a Cl- channel in the distal nephron. In addition, the number of open channels (NP(o)) measured in cell-attached patches was significantly increased when Ca2+ concentration or pH in the pipette was increased, which is another characteristic of ClC-K. These findings suggest that the basis for this channel is ClC-K2. A similar Cl- channel was found in CCD patches. Because CNT and CCD are heterogeneous tissues, we studied the cellular distribution of the Cl- channel using recording conditions (KCl-rich solution in the pipette) that allowed us to detect simultaneously Cl- channels and inwardly rectifying K+ channels. We detected Cl- channels alone in 45% and 42% and K+ channels alone in 51% and 58% of CNT and CCD patches, respectively. Cl- and K+ channels were recorded simultaneously from two patches (4% of patches) in the CNT and from none of the patches in the CCD. This indicates that Cl- and K+ channels are located in different cell types, which we suggest may be the intercalated cells and principal cells, respectively

    Functional maturation of the first synapse in olfaction:development and adult neurogenesis

    No full text
    International audienceThe first synapse in olfaction undergoes considerable anatomical plasticity in both early postnatal development and adult neurogenesis, yet we know very little concerning its functional maturation at these times. Here, we used whole-cell recordings in olfactory bulb slices to describe olfactory nerve inputs to developing postnatal neurons and to maturing adult-born cells labeled with a GFP-encoding lentivirus. In both postnatal development and adult neurogenesis, the maturation of olfactory nerve synapses involved an increase in the relative contribution of AMPA over NMDA receptors, and a decrease in the contribution of NMDA receptors containing the NR2B subunit. These postsynaptic transformations, however, were not mirrored by presynaptic changes: in all cell groups, paired-pulse depression remained constant as olfactory nerve synapses matured. Although maturing cells may therefore offer, transiently, a functionally distinct connection for inputs from the nose, presynaptic function at the first olfactory connection remains remarkably constant in the face of considerable anatomical plasticity

    GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.

    No full text
    International audienceSensory perception emerges from the confluence of sensory inputs that encode the composition of external environment and top-down feedback that conveys information from higher brain centers. In olfaction, sensory input activity is initially processed in the olfactory bulb (OB), serving as the first central relay before being transferred to the olfactory cortex. In addition, the OB receives dense connectivity from feedback projections, so the OB has the capacity to implement a wide array of sensory neuronal computation. However, little is known about the impact and the regulation of this cortical feedback. Here, we describe a novel mechanism to gate glutamatergic feedback selectively from the anterior olfactory cortex (AOC) to the OB. Combining in vitro and in vivo electrophysiological recordings, optogenetics, and fiber-photometry-based calcium imaging applied to wild-type and conditional transgenic mice, we explore the functional consequences of circuit-specific GABA type-B receptor (GABABR) manipulation. We found that activation of presynaptic GABABRs specifically depresses synaptic transmission from the AOC to OB inhibitory interneurons, but spares direct excitation to principal neurons. As a consequence, feedforward inhibition of spontaneous and odor-evoked activity of principal neurons is diminished. We also show that tunable cortico-bulbar feedback is critical for generating beta, but not gamma, OB oscillations. Together, these results show that GABABRs on cortico-bulbar afferents gate excitatory transmission in a target-specific manner and thus shape how the OB integrates sensory inputs and top-down information
    corecore